
SLIM EXCEPTIONAL SETS FOR

SUMS OF FOUR SQUARES

Trevor D. Wooley∗

1. Introduction. The celebrated theorem of Lagrange, to the effect that all natural numbers are the
sum of four squares of integers, remains to this day one of the brightest in the firmament of additive
number theory. Problems in which the squares are restricted in various ways have provided an attractive
menu of possible extensions of Lagrange’s theorem. Perhaps the most tempting such problem asserts
that all large integers congruent to 4 modulo 24 are the sum of four squares of prime numbers, the
congruence condition arising naturally from the observation that when p is a prime number exceeding
3, one has p2 ≡ 1 (mod 24). Although progress has been made in a number of related problems (a
topic we discuss below), the best approximation at present to this Waring-Goldbach problem for four
squares shows only that the desired conclusion holds almost always. Let E(N) denote the number of
positive integers not exceeding N that are congruent to 4 modulo 24, yet cannot be written as the sum
of four squares of prime numbers. Then a refinement by Schwarz [19] of an earlier conclusion of Hua [11]
implies that for any positive number A, one has E(N) � N(logN)−A, thereby justifying our earlier
assertion. Even the substantially sharper bound E(N)� N13/15+ε, valid for each ε > 0, very recently
established by J. Liu and M.-C. Liu [16], seems somewhat disappointing given that an exceptional set
of size O(N(logN)−A), for any A > 0, had already been established by Schwarz [19] in the analogous
problem involving only three squares of prime numbers. In this paper we seek to effectively exploit the
“excess” fourth square of a prime so as to improve substantially this most recent bound for E(N). It
transpires that the ideas underlying this progress permit estimates for exceptional sets in a variety of
additive problems to be significantly slimmed whenever sufficiently many excess variables are available.
We illustrate such ideas within this paper for sums of squares, deferring to a future occasion a more
comprehensive investigation of accessible applications.

Our improved estimate for E(N), which we describe in the following theorem, is established in §2
below.

Theorem 1.1. For each ε > 0, one has E(N)� N13/30+ε.

The bound recorded in Theorem 1.1 should be compared with the aforementioned estimate E(N)�
N13/15+ε due to Liu and Liu [16]. Various authors have considered alternative approximations to the
conjecture that all large integers congruent to 4 modulo 24 may be written as the sum of four squares
of prime numbers. Thus Hua [11] showed that all large integers congruent to 5 modulo 24 may be
written as the sum of five squares of prime numbers, and Brüdern and Fouvry [2] have shown that this
conjecture holds when almost-primes are substituted for the primes (here, the almost-primes may have
as many as 34 prime factors). Meanwhile, Shields [20], Plaksin [17] and Kovalchik [15] have obtained
an asymptotic formula for the number of representations of an integer as the sum of two squares of
integers and two squares of prime numbers (see Greaves [7] for an earlier non-trivial lower bound for
the number of such representations). Current technology apparently lacks the power to establish the
validity of the expected asymptotic formula for the number of representations of an integer as the sum
of a square of an integer, and three squares of prime numbers. We are able, however, to show that such
an asymptotic formula holds almost always, with rather few possible exceptions.

In order to state the latter conclusion precisely, we require some notation. When n is a natural
number, denote by R(n) the number of representations of n as the sum of a square of an integer and
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three squares of prime numbers. Also, let S(n) denote the associated singular series corresponding to
n, which we define by

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)(
φ(q)−1S∗(q, a)

)3
e(−an/q), (1.1)

where φ(q) denotes Euler’s totient function, we write

S(q, a) =

q∑
r=1

e(ar2/q) and S∗(q, a) =

q∑
t=1

(t,q)=1

e(at2/q), (1.2)

and, as usual, e(z) denotes e2πiz. We remark that S(n) = 0 unless n ≡ 3, 4, 7, 12, 15 or 19 modulo 24,
in which case one has 1 � S(n) � log log n. When ψ(t) is a function of a positive variable t, denote
by E∗(N ;ψ) the number of integers n with 1 ≤ n ≤ N for which∣∣∣R(n)− 1

2π
2S(n)n(log n)−3

∣∣∣ > n(log n)−3ψ(n)−1. (1.3)

Theorem 1.2. Suppose that ψ is a function of a positive variable t, increasing monotonically to infinity,
and satisfying the condition that for some fixed number A > 0, for large values of t one has ψ(t) =
O((log t)A). Then one has

E∗(N ;ψ)� ψ(N)4(logN)6.

As a final illustration of our methods we consider sums of squares of integers possessing only small
prime divisors. Sárközy has conjectured that for each positive number ε, every sufficiently large natural
number N is the sum of four squares of integers, the largest prime divisors of which are all smaller
than Nε. Harcos [9] has made some progress in the direction of this conjecture by establishing such a
conclusion for almost all natural numbers N . Let P (n) denote the largest prime divisor of n, and write
L(t) = exp((log t log log t)1/2). Then Harcos established that for almost all integers m with 1 ≤ m ≤ N
and 8 - m, the equation n21 + n22 + n23 + n24 = m possesses a solution with P (n1n2n3n4) < L(m)20.
Indeed, Harcos shows that the number of possible exceptions is at most O(NL(N)−1/16). By modestly
weakening the smoothness parameter and applying the ideas underlying the proof of Theorem 1.1 above,
we sharpen considerably the latter conclusion.

Theorem 1.3. Define E(N ;β) to be the number of positive integers m not exceeding N for which the
equation

n21 + n22 + n23 + n24 = m

fails to possess a solution with P (n1n2n3n4) < mβ. Then for every sufficiently small positive number
η, one has E(N ; η)� N1/2−η/1600.

In contrast to the conclusion of Harcos [9], we do not impose any conditions concerning divisibility
by 8, for as we see in §4, such issues are essentially irrelevant to the estimation of the exceptional set.
We note also that at the cost of greater effort, the smoothness parameter mη implicit in the statement
of Theorem 1.3 may be replaced by exp(c logm/ log logm), for a suitable positive constant c.

The principles underlying our approach to these exceptional set problems are clearly illustrated in our
proof of Theorem 1.1 in §2 below. Roughly speaking, we replace the conventional argument, involving
Bessel’s inequality, with one in which the set of “exceptions” appears explicitly within our application
of the Hardy-Littlewood method. In this respect, our argument draws inspiration from recent work of
Brüdern, Kawada and Wooley concerning exceptional sets in polynomial sequences (see, for example,
[3, 4]). Equipped with sufficiently many excess variables (and with four squares one has one such
variable), one may exploit one or more of these excess variables within a mean value incorporating an
exponential sum over the exceptional set. Under favourable conditions, this mean value is dominated by
the diagonal contribution, and thus one achieves square-root cancellation in the exponential sum over
this squared variable. By comparison, in the traditional approach via Bessel’s inequality, one makes
use of these excess variables through available Weyl estimates. For exponential sums over squares of
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primes, for example, such estimates are far from achieving square-root cancellation. In this way one
profits handsomely in the estimation of the associated exceptional set.

Throughout, the letter ε will denote a sufficiently small positive number. We use � and � to
denote Vinogradov’s well-known notation, implicit constants depending at most on ε, unless otherwise
indicated. When α is a real number, we write [α] for the greatest integer not exceeding α. Also, we
denote the number of divisors of a positive integer n by d(n). In an effort to simplify our analysis,
we adopt the convention that whenever ε appears in a statement, then we are implicitly asserting that
for each ε > 0 the statement holds for sufficiently large values of the main parameter. Note that the
“value” of ε may consequently change from statement to statement, and hence also the dependence of
implicit constants on ε.

2. Four squares of primes. Our proof of Theorem 1.1 is accomplished without serious technical
discussion, but such concision demands recourse to the literature. We begin by recording some notation.
Let δ be a sufficiently small positive number, and let N be a positive number sufficiently large in terms
of δ. Following the notation introduced in Liu and Liu [16], we write

X = N1/2, P = N2/15−δ and Q = NP−1(logN)−14. (2.1)

We define the set of major arcs M as the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ Q−1},

with 0 ≤ a ≤ q ≤ P and (a, q) = 1. We then denote the corresponding set of minor arcs by m = [0, 1)\M.
Finally, we define the weighted exponential sum g(α) by

g(α) =
∑
p≤X

(log p)e(p2α),

where here, and throughout, the letter p denotes a prime number.

Lemma 2.1. Whenever N/2 < n ≤ N and n ≡ 4 (mod 24), one has∫
M

g(α)4e(−nα)dα� N.

Proof. The desired lower bound is an immediate consequence of Theorem 2 of Liu and Liu [16].

The proof of Theorem 1.1. Denote by Z(N) the set of integers n with N/2 < n ≤ N for which n ≡ 4
(mod 24), and yet the equation

p21 + p22 + p23 + p24 = n

has no solution in prime numbers p1, . . . , p4. Define the exponential sum

K(α) =
∑

n∈Z(N)

e(nα),

and, for the sake of convenience, write Z = card(Z(N)). In view of the definition of Z(N), it is evident
from orthogonality that ∫ 1

0

g(α)4K(−α)dα =
∑

n∈Z(N)

∫ 1

0

g(α)4e(−nα)dα = 0.

But by Lemma 2.1, one has∫
M

g(α)4K(−α)dα =
∑

n∈Z(N)

∫
M

g(α)4e(−nα)dα� ZN,

and thus we deduce that ∣∣∣∫
m

g(α)4K(−α)dα
∣∣∣� ZN. (2.2)
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We estimate the integral over the minor arcs in (2.2) by applying Schwarz’s inequality. Thus we
deduce that ∣∣∣∫

m

g(α)4K(−α)dα
∣∣∣ ≤ (sup

α∈m
|g(α)|

)
I
1/2
1 I

1/2
2 , (2.3)

where

I1 =

∫ 1

0

|g(α)K(α)|2dα and I2 =

∫ 1

0

|g(α)|4dα.

The mean value I1 counts the number of solutions of the equation

p21 − p22 = n1 − n2,

with pi ≤ X (i = 1, 2) and nj ∈ Z(N) (j = 1, 2), where each solution is counted with weight
(log p1)(log p2). There are plainly O(ZX/ logX) solutions of this equation with n1 = n2 and p21 = p22.
Given any one of the O(Z2) available choices of n1 and n2 with n1 6= n2, on the other hand, one may
apply an elementary estimate for the divisor function to show that there are O(Xε) possible choices for
p1 − p2 and p1 + p2, whence also for p1 and p2. Thus we conclude that

I1 � (logN)2(ZX/ logX +XεZ2)� Nε(ZX + Z2). (2.4)

By arguing similarly, or instead applying Hua’s Lemma (see Lemma 2.5 of Vaughan [21]), one finds
that

I2 � (logN)4X2+ε � NεX2. (2.5)

Finally, we note that Theorem 2 of Ghosh [6] supplies the bound

sup
α∈m
|g(α)| � X1+ε(P−1 +X−1/2 +QX−2)1/4 � X1+εP−1/4. (2.6)

On recalling (2.2) and substituting the estimates (2.4)-(2.6) into (2.3), we deduce from (2.1) that

ZN � NεXP−1/4(XZ + Z2)1/2(X2)1/2

� ZN1+εP−1/4 + Z1/2N5/4+εP−1/4. (2.7)

But in view of the definition of P in (2.1), the first term on the right hand side of (2.7) is of smaller
order of magnitude than the left hand side, and thus we may conclude that

Z � N1/2+εP−1/2 � N
1
2−

1
15+δ.

The consequent upper bound card(Z(N)) � N13/30+δ leads to the conclusion of Theorem 1.1 on
summing over dyadic intervals.

We remark that an argument almost identical to that establishing Theorem 1.1 provides an analogous
conclusion for sums of three squares of primes and a kth power of a prime. In this instance, the associated

exceptional set may be shown to be at most O(N1/2−c/(k2k)), where c is a suitable positive number.
Combining the use of equation (2.6) of Bauer, Liu and Zhan [1] with modern estimates for trigonometric
sums over prime numbers (see, for example, Lemma 3.3 of Kawada and Wooley [14]), one may show
that any number c with c < 9/80 is permissible. Indeed, a more refined analysis shows that when k ≥ 4,
any number c with c < 1 is permissible.

3. Three squares of primes and an integral square. Although the skeleton of our proof of
Theorem 1.2 retains the key elements of the argument described in §2, we are forced by the precision
claimed in the statement of this theorem to indulge in a pruning process of medium difficulty. A full
account of the technical details involved in such a treatment would occupy considerable space, and we
therefore take the short cut of making use of recent work of Bauer, Liu and Zhan [1] concerning sums
of three squares of prime numbers. We start by introducing some notation. Let δ be a sufficiently small
positive number, let E be a positive number sufficiently large in terms of A, and let N be a positive
number sufficiently large in terms of δ and E. Following the notation introduced in Bauer, Liu and
Zhan [1], we write

X = N1/2, P = N9/80−δ and Q = NP−1(logN)−E .
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We define the set of major arcs N to be the union of the intervals

N(q, a) = {α ∈ [0, 1) : |qα− a| ≤ Q−1},

with 0 ≤ a ≤ q ≤ P and (a, q) = 1. We then denote the corresponding set of minor arcs by n = [0, 1)\N.
Before recording the estimate of Bauer, Liu and Zhan [1] of which we make use, we recall the

exponential sum S∗(q, a) defined in (1.2), and define

S∗(n, P ) =
∑

1≤q≤P

q∑
a=1

(a,q)=1

φ(q)−3S∗(q, a)3e(−na/q). (3.1)

Finally, we define the exponential sum

h(α) =
∑

M<p≤X

(log p)e(p2α),

where we write M = X(logN)−4E−4.

Lemma 3.1. Whenever 1 ≤ n ≤ N , one has∫
N

h(α)3e(−nα)dα = 1
4πS

∗(n, P )n1/2 +O((|S∗(n, P )|+ 1)X(logN)−2E).

Furthermore, when −N ≤ n < 0 one has∫
N

h(α)3e(−nα)dα� X(logN)−2E .

Finally, one has ∫
N

h(α)3dα� PX.

Proof. Write

h̃(α) =
∑

M<m≤X

Λ(m)e(m2α),

where Λ(·) denotes the well-known von Mangoldt function. Then one finds that for each non-zero
integer n with |n| ≤ N , the argument of Bauer, Liu and Zhan [1] leading to equation (2.6) of that paper
is easily modified to yield the asymptotic relation∫

N

h̃(α)3e(−nα)dα = 1
8S
∗(n, P )J(n) +O(X(logN)−2E), (3.2)

where we write
J(n) =

∑
m1+m2+m3=n

M2<mi≤N (i=1,2,3)

(m1m2m3)−1/2.

Here we remark that the condition M2 < mi ≤ N in the above replaces a corresponding condition that
would read N/12 < mi ≤ N in [1]. This wider range for the mi is, however, easily accomodated within
the argument of [1]. Next, on employing Lemma 2.9 of Vaughan [21], for example, we find that when
1 ≤ n ≤ N one has

J(n) =
Γ(1/2)3

Γ(3/2)
n1/2 +O(X(logN)−2E)

= 2πn1/2 +O(X(logN)−2E).

Thus we deduce that∫
N

h̃(α)3e(−nα)dα = 1
4πS

∗(n, P )n1/2 +O((|S∗(n, P )|+ 1)X(logN)−2E). (3.3)



6 TREVOR D. WOOLEY

Finally, on accounting for squares and higher powers of primes, one finds that

|h̃(α)− h(α)| � X1/2 logX.

But the measure of N is O(P 2Nε−1), and thus the trivial estimate |h̃(α)| � X leads to the relation∫
N

h(α)3e(−nα)dα−
∫
N

h̃(α)3e(−nα)dα� (X5/2 logX)(P 2Nε−1)

� X19/20+2ε. (3.4)

The conclusion of the lemma is now immediate from (3.3) for 1 ≤ n ≤ N . When −N ≤ n < 0, on the
other hand, it is apparent from (3.2) that∫

N

h̃(α)3e(−nα)dα� X(logN)−2E ,

and thus the desired conclusion again follows from (3.4). Finally, by applying Hua’s lemma (see Lemma
2.5 of Vaughan [21]) in combination with Hölder’s inequality, one finds that∫

N

h(α)3dα ≤
(∫ 1

0

|h(α)|4dα
)3/4(∫

N

dα
)1/4

� (X2+ε)3/4(P 2Nε−1)1/4 � PX.

Before discussing the major arc contribution for sums of a square and three squares of prime numbers,
we pause to analyse the singular series S∗(n, P ), and also the singular series S(n) defined in (1.1).

Lemma 3.2. Suppose that n is a natural number with N/2 < n ≤ N . Then
(i) the singular series S(n) defined in (1.1) is absolutely convergent, and one has 0 ≤ S(n)� log log n.

Moreover, provided only that n ≡ 3, 4, 7, 12, 15 or 19 modulo 24, one has S(n)� 1;
(ii) there is an absolute constant C with the property that∑

1≤m<
√
n

|S∗(n−m2, P )| � X(logN)C .

Proof. We begin by discussing the conclusion of part (i). Write

A(q, n) =

q∑
a=1

(a,q)=1

(φ(q)−1S∗(q, a))3(q−1S(q, a))e(−na/q), (3.5)

so that in view of (1.1), one has

S(n) =
∞∑
q=1

A(q, n).

We observe that whenever (t, q) = 1, a change of variables readily establishes that

A(q, n) =

q∑
a=1

(a,q)=1

(φ(q)−1S∗(q, at2))3(q−1S(q, at2))e(−nat2/q)

=

q∑
a=1

(a,q)=1

(φ(q)−1S∗(q, a))3(q−1S(q, a))e(−nat2/q),

whence

A(q, n) = q−1φ(q)−4
q∑
a=1

(a,q)=1

S(q, a)S∗(q, a)3S∗(q,−na). (3.6)
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But when (b, q) = 1, the estimate S(q, b) � q1/2 follows from Theorem 4.2 of Vaughan [21], and the
corresponding bound S∗(q, b) � q1/2+ε follows from Lemma 1.3 of Hua [10]. Thus we deduce that for
every positive number Y one has

∑
q>Y

|A(q, n)| �
∞∑
q=1

(q/Y )1/4|A(q, n)| � Y −1/4
∞∑
q=1

q−7/6(q, n)1/2

≤ Y −1/4
∑
d|n

∞∑
q=1
d|q

q−7/6d1/2 ≤ Y −1/4
∞∑
m=1

m−7/6
∑
d|n

d−2/3

� NεY −1/4. (3.7)

In particular, the singular series S(n) is absolutely convergent.

Next define γ = γ(p) by taking γ = 3 when p = 2, and otherwise by taking γ = 1. Then it follows
from Lemma 8.3 of Hua [12] that S∗(ph, a) = 0 when (p, a) = 1 and h > γ(p). Furthermore, the
standard theory of exponential sums demonstrates that A(q, n) is a multiplicative function of q (see
Lemma 8.1 of Hua [12] and §2.6 of Vaughan [21]). But when (b, p) = 1, Lemma 4.3 of Vaughan [21]
leads to the estimates |S(p, b)| = √p and |S∗(p, b)| ≤ √p+ 1. It therefore follows from (3.6) that when
p > 2,

∞∑
h=0

A(ph, n) = 1 +A(p, n) = 1 +O(np−3/2),

whence the infinite product ∏
p

( ∞∑
h=0

A(ph, n)
)

is absolutely convergent. Moreover, one also obtains the upper bound

S(n)� (8, n)
∏
p>2

(1 +A(p, n))

�

(∏
p|n
p>2

(
1 +

(√p+ 1

p− 1

)3√
p
))(∏

p-n
p>2

(1 + 21p−3/2)

)

�
∏
p|n

(1 + 1/p)� log log n.

Furthermore, on noting that

φ(pγ)3
γ∑
h=0

A(ph, n)

counts the number of solutions of the congruence

x21 + x22 + x23 + x24 ≡ n (mod pγ),

with 1 ≤ xi ≤ pγ (1 ≤ i ≤ 4) and (xi, p) = 1 (2 ≤ i ≤ 4), it is evident that this expression is real and
non-negative for each prime p, whence also S(n) ≥ 0. Also, when n ≡ 3, 4, 7, 12, 15 or 19 modulo
24, it is easily verified that the above congruence possesses at least one solution of the required type
for every prime p. Here one may proceed directly when p = 2 or 3, and for larger primes p one may
appeal to the Cauchy-Davenport lemma (see, for example, Lemma 2.14 of Vaughan [21]). But for every
reduced residue b modulo p, one has S(p, b)− S∗(p, b) = 1 and S(p,−b) = ±S(p, b). On employing our
earlier estimates, we therefore obtain∣∣S∗(p, b)3S(p, b)− |S(p, b)|4

∣∣ ≤ 7(
√
p+ 1)3.
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Then we may proceed as above to deduce that for a sufficiently large but fixed positive number p0, one
has

S(n)�

(∏
p|n
p>p0

(
1 + p−1(p− 1)−2(p2 − 7(

√
p+ 1)3)

))(∏
p-n
p>p0

(1− 21p−3/2)

)

�
∏
p|n

(1 + 1/p)� 1.

This completes the proof of part (i) of the lemma.
For the proof of part (ii), we initially proceed as in part (i) to deduce that

S∗(n, P ) =
∑

1≤q≤P

B(q, n),

where

B(q, n) =

q∑
a=1

(a,q)=1

(
φ(q)−1S∗(q, a)

)3
e(−na/q)

= φ(q)−4
q∑
a=1

(a,q)=1

S∗(q, a)3S∗(q,−na).

Thus, just as in part (i), we deduce that

|S∗(n, P )| �

( ∏
2<p≤P
p|n

(
1 +

(√p+ 1

p− 1

)3
p
))( ∏

2<p≤P
p-n

(
1 +

(√p+ 1

p− 1

)4
p

)

�

(∏
p|n

(1 + p−1/2)

)(∏
p≤P

(1 + p−1)

)
� d(n) logP.

But then it follows from van der Corput’s lemma (see, for example, Theorem 3 of Hua [12]) that∑
1≤m<

√
n

|S∗(n−m2, P )| � (logN)
∑

1≤m<
√
n

d(n−m2)�
√
n(logN)C ,

where C is an absolute constant. The conclusion of part (ii) of the lemma is now immediate.

In order to make further progress we must equip ourselves with the additional exponential sum

f(α) =
∑
m≤X

e(m2α).

Lemma 3.3. Suppose that n is an integer with N/2 < n ≤ N . Then one has∫
N

f(α)h(α)3e(−nα)dα = 1
16π

2S(n)n+O(N(logN)−E).

Proof. We begin by transforming the integral in question into one more closely resembling that in the
statement of Lemma 3.1. We observe that∫

N

f(α)h(α)3e(−nα)dα =
∑

1≤m≤X

∫
N

h(α)3e(−(n−m2)α)dα.
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Then it follows from Lemma 3.1 that whenever N/2 < n ≤ N , one has∫
N

f(α)h(α)3e(−nα)dα = R1 +O(R2), (3.8)

where
R1 = 1

4π
∑

1≤m<
√
n

S∗(n−m2, P )(n−m2)1/2

and
R2 =

∑
1≤m<

√
n

(|S∗(n−m2, P )|+ 1)X(logN)−2E .

We first dispose of the contribution of R2 within (3.8), noting that as a consequence of Lemma 3.2(ii),
there is an absolute constant C with the property that

R2 � (X(logN)C)(X(logN)−2E).

Thus, provided that E is chosen sufficiently large, as we may assume, it follows that

R2 � N(logN)−E . (3.9)

Next we deal with R1. On splitting the sum over m into arithmetic progressions modulo q, and
recalling the definition (3.1), one finds that∑

1≤m<
√
n

S∗(n−m2, P )(n−m2)1/2

=
∑

1≤q≤P

q∑
a=1

(a,q)=1

φ(q)−3S∗(q, a)3e(−na/q)U(q, a;n), (3.10)

where

U(q, a;n) =

q∑
r=1

∑
0≤u<(

√
n−r)/q

e(a(qu+ r)2/q)(n− (qu+ r)2)1/2.

But on considering lattice points in an associated ellipse, one may apply an elementary counting argu-
ment to establish that ∑

0≤u<(
√
n−r)/q

(n− (qu+ r)2)1/2 = 1
4π(n/q +O(n1/2)),

whence, on recalling (1.2), one finds that

U(q, a;n) = 1
4πq

−1S(q, a)n+O(qn1/2).

On substituting into (3.10) and recalling (3.5), one deduces that∑
1≤m<

√
n

S∗(n−m2, P )(n−m2)1/2 = 1
4πn

∑
1≤q≤P

A(q, n) +O(n1/2P 3). (3.11)

In order to complete the singular series implicit in (3.11), we recall (3.7), and deduce that∑
q>P

A(q, n)� NεP−1/4.

We therefore conclude from (3.8), (3.9) and (3.11) that whenever N/2 < n ≤ N , one has∫
N

f(α)h(α)3e(−nα)dα = 1
16π

2n(S(n) +O(NεP−1/4)) +O(N(logN)−E).

The desired asymptotic formula is now immediate on making use of Lemma 3.2(i).

Our final preparation for the proof of Theorem 1.2 involves a sieve upper bound associated with the
number of representations of an integer as a sum of four squares of primes.
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Lemma 3.4. When k is a non-zero integer with |k| ≤ N , one has∫ 1

0

|h(α)|4e(−kα)dα� X2.

Proof. By orthogonality, one has∫ 1

0

|h(α)|4e(−kα)dα ≤ (logX)4r(k),

where r(k) denotes the number of solutions of the equation

p21 + p22 − p23 − p24 = k,

with pi ≤ X. Let B denote the sequence of integers

B = {x1x2x3x4 ∈ N : 1 ≤ xi ≤ X (1 ≤ i ≤ 4) and x21 + x22 − x23 − x24 = k},

and write
S(B, z) =

∑
n∈B

p|n⇒p>z

1.

We apply the technology of Brüdern and Fouvry [2] to engineer a four dimensional sieve, and thereby
demonstrate that for a suitable positive number δ, with 0 < δ < 1/2, one has

S(B, Xδ)�δ X
2(logX)−4.

Since S(B, Xδ) plainly provides an upper bound for r(k), the desired conclusion will follow immediately.
In order to justify our claimed bound on S(B, Xδ), we observe that the argument on p.81 of Brüdern

and Fouvry [2] applies, with simple modifications, to the present situation. On p.212 of Halberstam
and Richert [8], one finds a sieving limit 9.32 for dimension 4, and thus the analogue of Lemma 9 of
Brüdern and Fouvry [2] relevant to the current problem, combined with the upper bound for S(B, z)
provided by Theorem 1 of Iwaniec [13], demonstrates that

S(B, z)� X2(logX)−4 +X2−ε.

This establishes our earlier claim, and hence also the conclusion of the lemma.

We may now launch our campaign against the proof of Theorem 1.2. Let R0(n) denote the number
of representations of n in the form

n = x2 + p21 + p22 + p23, (3.12)

with x ∈ N, with pi (i = 1, 2, 3) prime numbers exceeding M , and with each solution counted with
weight (log p1)(log p2)(log p3). Then by orthogonality, whenever N/2 < n ≤ N one has

R0(n) =

∫ 1

0

f(α)h(α)3e(−nα)dα. (3.13)

Consider a fixed function ψ(t) of the type described in the statement of Theorem 1.2, and define Z(N)
to be the set of integers n with N/2 < n ≤ N for which the inequality

|R0(n)− 1
16π

2S(n)n| > 1
10nψ(n)−1 (3.14)

holds. We aim to show that card(Z(N)) � ψ(N)4(logN)5, whence the conclusion of Theorem 1.2
follows with little additional effort.

By virtue of Lemma 3.3, we find that for n ∈ Z(N), one has∣∣∣R0(n)−
∫
N

f(α)h(α)3e(−nα)dα
∣∣∣ > 1

30Nψ(N)−1 +O(N(logN)−E),
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whence by (3.13), ∣∣∣∫
n

f(α)h(α)3e(−nα)dα
∣∣∣ > 1

60Nψ(N)−1. (3.15)

Define the complex numbers ηn by taking ηn = 0 for n 6∈ Z(N), and when n ∈ Z(N) by means of the
equation ∣∣∣∫

n

f(α)h(α)3e(−nα)dα
∣∣∣ = ηn

∫
n

f(α)h(α)3e(−nα)dα.

In view of (3.15), one obtains

Nψ(N)−1card(Z(N))�
∑

N/2<n≤N

ηn

∫
n

f(α)h(α)3e(−nα)dα

=

∫
n

f(α)h(α)3K(−α)dα, (3.16)

where we write
K(α) =

∑
N/2<n≤N

ηne(nα). (3.17)

Observe next that by Dirichlet’s theorem on Diophantine approximation, the set [0, 1) is contained
in the union of the intervals

P(q, a) = {α ∈ [0, 1) : |qα− a| ≤ X−1}

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. As a special case of Theorem 1 of Vaughan [22], whenever a ∈ Z,
q ∈ N and β = α− a/q, one has

|f(α)| � |q−1S(q, a)v(β)|+ (qX2|β|)1/2 + q1/2 log(2q),

where S(q, a) is defined as in (1.2) and v(β) =
∫X
0
e(βt2)dt. Define the function ∆(α) for α ∈ [0, 1) by

taking
∆(α) = min{(q +N |qα− a|)−1},

where the minimum is taken over the values of a ∈ Z and q ∈ N with 0 ≤ a ≤ q ≤ X, (a, q) = 1 and
|qα− a| ≤ X−1. Then on applying Theorem 4.2 of Vaughan [21] together with the estimate

v(β)� X(1 +X2|β|)−1/2

that is immediate from partial integration, one finds that whenever 0 ≤ a ≤ q ≤ X, (a, q) = 1 and
α ∈ P(q, a), one has

|f(α)| � X(q +X2|qα− a|)−1/2 +X1/2 + q1/2 log(2q).

Consequently, one has the estimate

|f(α)| � X∆(α)1/2 +X1/2 logX

uniformly for α ∈ [0, 1). On substituting this estimate into (3.16), we therefore obtain

Nψ(N)−1Z � I1 + I2, (3.18)

where we write Z = card(Z(N)),

I1 = X1/2(logN)

∫ 1

0

|h(α)3K(α)|dα (3.19)

and

I2 = X

∫
n

∆(α)1/2|h(α)3K(α)|dα. (3.20)
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Next, on applying Schwarz’s inequality to (3.19), one deduces that

I1 ≤ X1/2(logN)I
1/2
3 I

1/2
4 , (3.21)

where

I3 =

∫ 1

0

|h(α)|4dα and I4 =

∫ 1

0

|h(α)K(α)|2dα.

But as a consequence of Rieger [18, Satz 3], one has

I3 � X2(logX)2 (3.22)

(see, for example, Liu and Liu [16, equation (6.10)]). Also, as in the argument leading to the estimate
(2.4) above, one finds that

I4 � (logN)2(ZX/ logX +XεZ2). (3.23)

On substituting (3.22) and (3.23) into (3.21), we conclude that

I1 � N(logN)5/2Z1/2 +N3/4+εZ. (3.24)

We estimate I2 through the medium of Hölder’s inequality, obtaining from (3.20) the upper bound

I2 ≤ I1/23 I
1/4
5 I

1/4
6 , (3.25)

where

I5 =

∫ 1

0

|h(α)4K(α)2|dα and I6 = X4

∫
n

∆(α)2|K(α)|2dα.

Here we note immediately that on making use of (3.22) for the diagonal contribution in I5, and employing
Lemma 3.4 for the corresponding off-diagonal contribution, one obtains

I5 ≤ Z
∫ 1

0

|h(α)|4dα+
∑

k1,k2∈Z(N)
k1 6=k2

∫ 1

0

|h(α)|4e((k1 − k2)α)dα

� ZX2(logX)2 + Z2X2. (3.26)

On recalling the definitions of n and ∆(α), meanwhile, one finds that

I6 � X4(T1 + T2), (3.27)

where

T1 =
∑

P<q≤X

q∑
a=1

(a,q)=1

∫ ∞
−∞

|K(β + a/q)|2

(q + qN |β|)2
dβ

and

T2 =
∑

1≤q≤P

q∑
a=1

(a,q)=1

∫
|β|>(qQ)−1

|K(β + a/q)|2

(q + qN |β|)2
dβ.

Let cq(m) be Ramanujan’s sum, which we define by

cq(m) =

q∑
a=1

(a,q)=1

e(am/q).

Then it follows that

q∑
a=1

(a,q)=1

|K(β + a/q)|2 =
∑

n1,n2∈Z(N)

ηn1
ηn2

cq(n1 − n2)e(β(n1 − n2)).



SLIM EXCEPTIONAL SETS 13

The familiar estimate |cq(m)| ≤ (q,m) (noting the convention that (q, 0) = q) therefore leads to the
estimates

T1 � N−1
∑

P<q≤X

q−2
∑

n1,n2∈Z(N)

(q, n1 − n2)

and
T2 � QN−2

∑
1≤q≤P

q−1
∑

n1,n2∈Z(N)

(q, n1 − n2).

On isolating the diagonal contribution, we deduce that

T1 � N−1Z
∑

P<q≤X

q−1 +N−1
∑

n1,n2∈Z(N)
n1 6=n2

∑
d|(n1−n2)

∑
P<q≤X
d|q

dq−2.

But on making an elementary divisor function estimate, one finds that when m 6= 0 one has∑
d|m

∑
P<q≤X
d|q

dq−2 ≤ P−1
∑
d|m

∑
P/d<t≤X/d

t−1 � mεP−1 logX.

Thus we conclude that
T1 � ZN−1 logX + P−1Nε−1Z2, (3.28)

and by a similar argument,

T2 � QN−2Z
∑

1≤q≤P

1 +QN−2
∑

n1,n2∈Z(N)
n1 6=n2

∑
d|(n1−n2)

∑
1≤q≤P
d|q

dq−1

� ZPQN−2 +QNε−2Z2 � ZN−1 + P−1Nε−1Z2. (3.29)

On substituting (3.28) and (3.29) into (3.27), recalling (3.22) and (3.26), and incorporating these
estimates into (3.25), we arrive at the upper bound

I2 � (X2(logX)2)1/2(ZX2(logX)2 + Z2X2)1/4

× (ZN(logX) + Z2P−1N1+ε)1/4

� Z1/2N(logN)7/4 + Z3/4N(logN)5/4 + ZN1+εP−1/4.

In view of (3.18) and (3.24), therefore, one has

Nψ(N)−1Z � Z1/2N(logN)5/2 + Z3/4N(logN)5/4 + ZN1+εP−1/4.

We thus conclude that card(Z(N)) � ψ(N)4(logN)5, as desired. In order to complete the proof of
Theorem 1.2, it remains now only to remove the logarithmic weights, complete the intervals containing
the primes, and sum the contributions from a set of dyadic intervals covering [1, N ].

In order to remove the weights, note that when M < p ≤ X, one has log p = logX + O(log logN).
Thus, whenever N/2 < n ≤ N , each solution of (3.12) counted by (3.13) appears with weight 1

8 (log n)3+

O((log n)2+ε). Let R∗(n) denote the number of representations of n in the form (3.12) with x ∈ N,
and with pi (i = 1, 2, 3) prime numbers exceeding M . Then from (3.14) and the definition of Z(N), it
follows that the inequality

|R∗(n)− 1
2π

2S(n)n(log n)−3| > 5
6n(log n)−3ψ(n)−1

holds for at most O(ψ(N)4(logN)5) of the integers n with N/2 < n ≤ N .
We finish by showing that the contribution to R(n) arising from prime variables pi, with pi ≤M for

i = 1, 2 or 3, is negligible compared to R∗(n). In order to see this, note that the total number of such
solutions is bounded above by

3

∫ 1

0

|f(α)b(α)B(α)2|dα,
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where we write
b(α) =

∑
p≤M

e(p2α) and B(α) =
∑
p≤X

e(p2α).

But in view of Rieger [18, Satz 3], one has∫ 1

0

|b(α)|4dα�M2(logM)−2 and

∫ 1

0

|B(α)|4dα� X2(logX)−2,

and moreover a classical estimate yields∫ 1

0

|f(α)|4dα� X2 logX.

Then an application of Hölder’s inequality yields the bound∫ 1

0

|f(α)b(α)B(α)2|dα

≤
(∫ 1

0

|f(α)|4dα
)1/4(∫ 1

0

|b(α)|4dα
)1/4(∫ 1

0

|B(α)|4dα
)1/2

� (X2 logX)1/4(M2(logM)−2)1/4(X2(logX)−2)1/2

� X3/2M1/2(logN)−5/4 � N(logN)−2E .

Whenever ψ(N) = O((logN)E), therefore, the contribution of these small primes is negligible compared
to N(logN)−3ψ(N)−1. It follows that the lower bound (1.3) holds for at most O(ψ(N)4(logN)5) of
the integers n with N/2 < n ≤ N . On summing over dyadic intervals, we conclude that (1.3) holds for
at most O(ψ(N)4(logN)6) of the integers n with 1 ≤ n ≤ N , and this completes the proof of Theorem
1.2.

4. Four smooth squares. The key features of our method, so far as it applies to sums of squares,
are already evident from the discussion of §§2 and 3, and so we will be as brief as possible in our proof
of Theorem 1.3. It is expedient to make use of the treatment provided in Harcos [9], although this
weighted version of the circle method is not the most direct approach (see Brüdern and Wooley [5] for
an alternative weightless argument). We begin by introducing some notation in the spirit of Harcos [9],
and we note here that the notation of previous sections is now discarded. Let η be a sufficiently small
positive number, and let N be a positive number sufficiently large in terms of η. We define w = Nη/56,
y = w27 and z = y8/27 = w8. Let

X = N1/2, Q = Nz−1/4, U = [4N/y] + 1,

and
L = {l ∈ N : 9

10Xy
−1 ≤ l ≤ Xy−1 and p|l⇒ z < p ≤ y}.

After introducing the weights

dn =
∑
ml=n
m≤y
l∈L

1,

for 1 ≤ n ≤ X, we define

f(α) =
∑

1≤n≤X

dne(n
2α), u(α) = U−1

U−1∑
u=0

e(nα),

and

h(α) = f(α)u(α) =
N+U−1∑
n=1

hne(nα),
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where
hn = U−1

∑
n−U<j2≤n

dj .

A weighted lower bound for the number of representations of a natural number M as the sum of four
squares of integers, all of whose prime divisors are at most y, is provided by

J(M) =

∫ 1

0

f(α)4e(−Mα)dα. (4.1)

Harcos [9] estimates J(M) on average by comparing this integral with

I(M) =

∫ 1

0

h(α)4e(−Mα)dα. (4.2)

We require a Hardy-Littlewood dissection, and this we define as follows. We take M to be the union of
the intervals

M(q, a) = {α ∈ [0, 1) : |α− a/q| ≤ Q−1},

with 0 ≤ a ≤ q ≤ z and (a, q) = 1, and write m = [0, 1) \M. We extract from the discussion of Harcos
[9] a consequence of the major arc treatment relevant to our deliberations here.

Lemma 4.1. Suppose that M is an integer with N/2 < M ≤ N , such that 8 -M and J(M) = 0. Then
one has ∣∣∣∫

m

f(α)4e(−Mα)dα
∣∣∣+
∣∣∣∫

m

h(α)4e(−Mα)dα
∣∣∣� Nw−4/27−ε.

Proof. We note that our definitions of w and z differ from those of Harcos [9], but that the increased
sizes of w, z and y do not invalidate the accompanying analysis (indeed, much of the analysis would
become somewhat easier to execute in detail). The lower bound

I(M) ≥ Nw−4/27−ε (4.3)

follows from the argument of Harcos [9] leading to [9, equation (4)]. Also, on examining the argument
of [9] leading to equation (3) of that paper, one finds that∣∣∣∫

M

f(α)4e(−Mα)dα−
∫
M

h(α)4e(−Mα)dα
∣∣∣� Nz−1/4wε. (4.4)

Furthermore, our hypothesis that J(M) = 0 leads from (4.1) to the conclusion that∫
M

f(α)4e(−Mα)dα = −
∫
m

f(α)4e(−Mα)dα. (4.5)

On combining (4.2) and (4.5), we deduce that

I(M)−
∫
M

h(α)4e(−Mα)dα+

∫
M

f(α)4e(−Mα)dα

=

∫
m

h(α)4e(−Mα)dα−
∫
m

f(α)4e(−Mα)dα,

whence by applying the triangle inequality in combination with (4.3) and (4.4), we deduce that∣∣∣∫
m

h(α)4e(−Mα)dα−
∫
m

f(α)4e(−Mα)dα
∣∣∣ ≥ Nw−4/27−ε +O(Nz−1/4wε).

The conclusion of the lemma follows immediately by means of a second application of the triangle
inequality.
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The proof of Theorem 1.3. Let Z1(N) denote the set of integers M with N/2 < M ≤ N satisfying
8 -M , with J(M) = 0, and such that∣∣∣∫

m

f(α)4e(−Mα)dα
∣∣∣ ≥ ∣∣∣∫

m

h(α)4e(−Mα)dα
∣∣∣. (4.6)

Also, let Z2(N) denote the corresponding set of integers M in which the inequality (4.6) is reversed.
We aim to show that card(Zi(N))� N1/2w−1/28 (i = 1, 2), whence by summing over dyadic intervals
it follows that there are O(N1/2w−1/28) integers M with 1 ≤ M ≤ N and 8 - M which fail to admit a
representation as the sum of four integral squares, all of whose prime divisors are at most Mη. If M is
an integer with 8|M , and one has M = x21+x22+x23+x24, then necessarily 2|xi (1 ≤ i ≤ 4). Thus M fails
to admit a representation of the desired type precisely when M/4 fails to admit such a representation.
Either 8 - (M/4), or else we may again extract a factor of 4 from M/4. In this way, one finds that the
integers divisible by 8 contribute a set of exceptions of the shape 4jξ, with ξ an exceptional integer with
8 - ξ. Since each such ξ contributes at most logN exceptional integers not exceeding N , the conclusion
of Theorem 1.3 follows from our claimed bounds on card(Zi(N)).

The argument required to treat Z2(N) is essentially the same as that for Z1(N), so we discuss
here only the treatment associated with the latter. On recalling Lemma 4.1, it follows from (4.6) that
whenever M ∈ Z1(N), one has ∣∣∣∫

m

f(α)4e(−Mα)dα
∣∣∣� Nw−4/27−ε. (4.7)

Define the complex numbers ηM by taking ηM = 0 for M 6∈ Z1(N), and when M ∈ Z1(N) by means of
the equation ∣∣∣∫

m

f(α)4e(−Mα)dα
∣∣∣ = ηM

∫
m

f(α)4e(−Mα)dα.

In view of (4.7), one obtains

Nw−4/27−εcard(Z1(N))�
∑

N/2<M≤N

ηM

∫
m

f(α)4e(−Mα)dα

=

∫
m

f(α)4K(−α)dα, (4.8)

where K(α) is defined as in (3.17).
Next, applying Schwarz’s inequality to (4.8), we find that

Nw−4/27−εcard(Z1(N))�
(

sup
α∈m
|f(α)|

)
J
1/2
1 J

1/2
2 , (4.9)

where

J1 =

∫ 1

0

|f(α)|4dα and J2 =

∫ 1

0

|f(α)K(α)|2dα.

On the one hand, it follows as in Lemma 5 of Harcos [9] that J1 � Nwε. Meanwhile, on considering
the underlying diophantine equation, we see that J2 is bounded above by the number of solutions of
the equation x21 − x22 = M1 −M2, with Mi ∈ Z1(N) (i = 1, 2), 1 ≤ xj ≤ X (j = 1, 2), and with each
solution counted with a weight bounded above, as in Lemma 1 of Harcos [9], by wε. Consequently, on
writing Z = card(Z1(N)), we find just as in the argument leading to (2.4) above that

J2 � wε(XZ + Z2).

On substituting these estimates into (4.9), and adding the upper bound

sup
α∈m
|f(α)| � Xz−1/48wε,

immediate from Lemma 4 of Harcos [9], we find that

Nw−4/27−εZ � wεN1/2Xz−1/48(XZ + Z2)1/2.

Thus we obtain
Z � z−1/48w4/27+εN1/4Z1/2 + z−1/48w4/27+εZ,

so that in view of the relative sizes of z and w, it follows that

card(Z1(N))� N1/2w−1/28.

On recalling our earlier comments, it is apparent that the proof of Theorem 1.3 is now complete.
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2. J. Brüdern and É. Fouvry, Lagrange’s four squares theorem with almost prime summands, J. Reine Angew. Math.

454 (1994), 59–96.
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